STRONG LAWS OF LARGE NUMBERS FOR WEIGHTED SUMS OF NEGATIVELY DEPENDENT RANDOM VARIABLES
نویسندگان
چکیده
منابع مشابه
Strong Laws for Weighted Sums of Negative Dependent Random Variables
In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.
متن کاملstrong laws for weighted sums of negative dependent random variables
in this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. the results on i.i.d case of soo hak sung [9] are generalized and extended.
متن کاملStrong Laws of Large Numbers for Weighted Sums of Negatively Dependent Random Variables
For double arrays of constants {ani, 1 ≤ i ≤ kn, n ≥ 1} and sequences of negatively orthant dependent random variables {Xn, n ≥ 1}, the conditions for strong law of large number of ∑kn i=1 aniXi are given. Both cases kn ↑ ∞ and kn = ∞ are treated.
متن کاملStrong Convergence of Weighted Sums for Negatively Orthant Dependent Random Variables
We discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (NOD) random variables by generalized Gaussian techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random variables is extended in NOD setting by generalized Gaussian techniques.
متن کاملMARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES
In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Mathematical Society
سال: 2006
ISSN: 0304-9914
DOI: 10.4134/jkms.2006.43.6.1325